blocky/conv/stego_fprob.cc

320 lines
8.5 KiB
C++

#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
#include <args.hxx>
#include <minimp4.h>
#include <codec/api/wels/codec_api.h>
#include "common.hh"
namespace param {
using namespace ::args;
ArgumentParser parser {
"converter: stego -> feature probability matrix"
};
HelpFlag help {
parser, "help", "display this menu", {'h', "help"},
};
ValueFlag<int32_t> bw {
parser, "128", "width of blocks (px)", {"block-w"}, 128,
};
ValueFlag<int32_t> bh {
parser, "128", "height of blocks (px)", {"block-h"}, 128,
};
ValueFlag<int32_t> utime {
parser, "10", "duration of each feature (frame)", {"utime"}, 10,
};
ValueFlag<int32_t> bmix {
parser, "8", "x interval of blockmatch (px)", {"bm-ix"}, 8,
};
ValueFlag<int32_t> bmiy {
parser, "8", "y interval of blockmatch (px)", {"bm-iy"}, 8,
};
ValueFlag<int32_t> bmsw {
parser, "4", "width of blockmatch search region (px)", {"bm-sw"}, 4,
};
ValueFlag<int32_t> bmsh {
parser, "4", "height of blockmatch search region (px)", {"bm-sh"}, 4,
};
enum Output {
kProb,
kIndex,
kLen,
kVec,
kNull,
};
const std::unordered_map<std::string, Output> kOutput = {
{"prob", kProb},
{"index", kIndex},
{"len", kLen},
{"vec", kVec},
{"null", kNull},
};
MapFlag<std::string, Output> output {
parser, "prob", "output type (len, vec, null)", {"output"}, kOutput,
};
Positional<std::string> vpath {
parser, "path", "video file path",
};
} // namespace param
struct Vec {
double x, y, score, len;
};
static Vec BlockMatching(const Frame& cf, const Frame& pf, int32_t bx, int32_t by) {
const auto bw = args::get(param::bw);
const auto bh = args::get(param::bh);
const auto bmix = args::get(param::bmix);
const auto bmiy = args::get(param::bmiy);
const auto bmsw = args::get(param::bmsw);
const auto bmsh = args::get(param::bmsh);
int32_t min_sx = 0, min_sy = 0;
double min_score = 1e+100; // INF
for (int32_t sy = -bmsh; sy < bmsh; ++sy) {
for (int32_t sx = -bmsw; sx < bmsw; ++sx) {
double score = 0;
for (int32_t y = 0; y < bh; y += bmiy) {
for (int32_t x = 0; x < bw; x += bmix) {
const auto c_off = (bx+x) + (by+y)*cf.w;
const auto p_off = (bx+x+sx) + (by+y+sy)*cf.w;
const auto diff = static_cast<double>(cf.Y[c_off] - pf.Y[p_off]);
score += diff*diff;
}
}
if (score < min_score) {
min_score = score;
min_sx = sx;
min_sy = sy;
}
}
}
const auto sxf = static_cast<double>(min_sx) / static_cast<double>(bmsw);
const auto syf = static_cast<double>(min_sy) / static_cast<double>(bmsh);
const auto scf = static_cast<double>(min_score) / static_cast<double>(UINT8_MAX*(bw/bmix)*(bh/bmiy));
return { .x = sxf, .y = syf, .score = scf, .len = std::sqrt(sxf*sxf+syf*syf), };
}
static Vec EachBlock(const Frame& cf, const Frame& pf, int32_t bx, int32_t by) {
const auto v = BlockMatching(cf, pf, bx, by);
switch (args::get(param::output)) {
case param::kLen:
std::cout << v.len << '\n';
break;
case param::kVec:
std::cout << bx << " " << by << " " << v.x << " " << v.y << " " << v.score << '\n';
break;
default:
break;
}
return v;
}
static void EachFrame(int32_t t, const Frame& cf, const Frame& pf) {
const auto bw = args::get(param::bw);
const auto bh = args::get(param::bh);
const auto ut = args::get(param::utime);
Enforce(cf.w == pf.w && cf.h == pf.h, "variable frame size is not allowed");
Enforce(cf.w > bw && cf.h > bh, "block size must be less than frame size");
struct Block {
double len, score;
};
static std::vector<Block> blocks;
if (t == 1) {
blocks.clear();
blocks.resize((cf.w/bw) * (cf.h/bh));
}
auto block = blocks.data();
for (int32_t by = 0; by+bh <= cf.h; by+=bh) {
for (int32_t bx = 0; bx+bw <= cf.w; bx+=bw) {
const auto v = EachBlock(cf, pf, bx, by);
block->score += v.score;
block->len += v.len;
++block;
}
}
switch (args::get(param::output)) {
case param::kLen:
case param::kVec:
std::cout << std::endl;
break;
case param::kIndex:
case param::kProb:
if (t == ut-1) {
for (size_t i = 0; i < blocks.size(); ++i) {
const auto len = blocks[i].len/(ut-1)/std::sqrt(2); // length calculation
const auto score = blocks[i].score/(ut-1);
const auto prob = std::clamp((1-len) * (1-score), 0., 1.);
if (args::get(param::output) == param::kIndex) {
if (prob > 0.95) std::cout << i << ' ';
} else {
std::cout << prob << ' ';
}
}
std::cout << std::endl;
}
break;
default:
break;
}
}
static void Exec() {
const auto bw = args::get(param::bw);
const auto bh = args::get(param::bh);
const auto ut = args::get(param::utime);
Enforce(bw > 0 && bh > 0, "block size must be greater than 0");
Enforce(ut > 0, "utime must be greater than 0");
const auto bmix = args::get(param::bmix);
const auto bmiy = args::get(param::bmiy);
const auto bmsw = args::get(param::bmsw);
const auto bmsh = args::get(param::bmsh);
Enforce(bmix > 0 && bmiy > 0, "block matching search interval must be greater than 0");
Enforce(bmsw > 0 && bmsh > 0, "block matching search region size must be greater than 0");
// open video stream
const auto vpath = args::get(param::vpath);
std::ifstream vst {vpath.c_str(), std::ifstream::binary | std::ifstream::ate};
Enforce(!!vst, "video stream is invalid");
const auto vsz = vst.tellg();
// init decoder
ISVCDecoder* dec;
Enforce(0 == WelsCreateDecoder(&dec), "decoder creation failure");
SDecodingParam decp = {};
decp.sVideoProperty.eVideoBsType = VIDEO_BITSTREAM_DEFAULT;
decp.eEcActiveIdc = ERROR_CON_SLICE_COPY;
Enforce(0 == dec->Initialize(&decp), "decoder init failure");
int declv = WELS_LOG_DEBUG;
dec->SetOption(DECODER_OPTION_TRACE_LEVEL, &declv);
uint8_t* yuv[3] = {0};
SBufferInfo frame = {};
// demux
MP4D_demux_t dem = {};
MP4D_open(&dem, [](int64_t off, void* buf, size_t sz, void* ptr) {
auto& vst = *reinterpret_cast<std::ifstream*>(ptr);
vst.seekg(off);
Enforce(!!vst, "seek failure");
vst.read(reinterpret_cast<char*>(buf), sz);
Enforce(!!vst, "read failure");
return 0;
}, &vst, vsz);
// find video track
size_t ti;
for (ti = 0; ti < dem.track_count; ++ti) {
const auto& tra = dem.track[ti];
if (tra.handler_type == MP4D_HANDLER_TYPE_VIDE) {
break;
}
}
Enforce(ti < dem.track_count, "no video track");
const auto& tra = dem.track[ti];
// consume SPS
std::vector<uint8_t> nal;
for (size_t si = 0;; ++si) {
int sz;
auto sps = reinterpret_cast<const uint8_t*>(MP4D_read_sps(&dem, ti, si, &sz));
if (!sps) break;
CopyNal(nal, sps, sz);
const auto ret = dec->DecodeFrameNoDelay(nal.data(), nal.size(), yuv, &frame);
Enforce(ret == 0, "SPS decode failure");
}
// consume PPS
for (size_t si = 0;; ++si) {
int sz;
auto pps = reinterpret_cast<const uint8_t*>(MP4D_read_pps(&dem, ti, si, &sz));
if (!pps) break;
CopyNal(nal, pps, sz);
const auto ret = dec->DecodeFrameNoDelay(nal.data(), nal.size(), yuv, &frame);
Enforce(ret == 0, "PPS decode failure");
}
// decode frame
Frame pf = {};
size_t t = 0;
for (size_t si = 0; si < tra.sample_count; ++si) {
unsigned fsz, time, dur;
const auto off = MP4D_frame_offset(&dem, ti, si, &fsz, &time, &dur);
vst.seekg(off);
Enforce(!!vst, "NAL seek failure");
nal.resize(fsz);
vst.read(reinterpret_cast<char*>(nal.data()), fsz);
Enforce(!!vst, "NAL read failure");
for (size_t i = 0; i < nal.size();) {
uint32_t sz =
(nal[i] << 24) | (nal[i+1] << 16) | (nal[i+2] << 8) | nal[i+3];
nal[i+0] = 0;
nal[i+1] = 0;
nal[i+2] = 0;
nal[i+3] = 1;
sz += 4;
const auto ret = dec->DecodeFrameNoDelay(&nal[i], sz, yuv, &frame);
Enforce(ret == 0, "frame decode failure");
i += sz;
Frame cf = {yuv, frame};
if (cf.w == 0 || cf.h == 0) continue;
const auto utf = t%ut;
if (utf > 0) {
EachFrame(utf, cf, pf);
}
pf = std::move(cf);
++t;
}
}
}
int main(int argc, char** argv)
try {
param::parser.ParseCLI(argc, argv);
Exec();
return EXIT_SUCCESS;
} catch (const args::Help&) {
std::cout << param::parser << std::endl;
return EXIT_SUCCESS;
} catch (const std::exception& e) {
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}