2023-06-23 12:15:59 +00:00
|
|
|
|
<?xml version="1.0" encoding="utf-8" standalone="yes"?><rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom"><channel><title>Notes on</title><link>https://ar.falsy.cat/note/</link><description>Recent content in Notes on</description><generator>Hugo -- gohugo.io</generator><language>en-us</language><atom:link href="https://ar.falsy.cat/note/index.xml" rel="self" type="application/rss+xml"/><item><title>2人の幼女と悪魔とチェス盤</title><link>https://ar.falsy.cat/note/word-play/two-lolita-devils-and-chess-board/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/word-play/two-lolita-devils-and-chess-board/</guid><description>概要 「2人の幼女とチェス盤の部屋」という次のような論理問題を解説する 以下の手順の後,幼女Bが任意の整数$x\left(0\leq x&lt;64\right)$を求められるようにするには,幼女Aはどのような操作を行うべきか 悪魔が8x8チェス盤の各マスに1個ずつ,合計0個以上64個以下のポーンをランダムに配置する 悪魔は幼女Aにチェス盤を見せ,任意の数字$x\left(0\leq x&lt;64\right)$を伝える 幼女Aは,チェス盤に対して次のいずれかの操作のうち可能であるものを1回だけ必ず行う 任意のマスからポーンを1個だけ取り除く 任意のマスにポーンを1個だけ追加する 悪魔は幼女Bにチェス盤を見せる 問題の簡潔化 $f(g(b,x))=x$とできるような写像$f,g$を求めよ $B=\left\{0,1\right\}$ $b\in B^{64}$ $x\in B^6$ $f: B^{64} \rightarrow B^6$ $g: B^{64} \times B^6\rightarrow B^{64}$ $b$と$g(b,x)$は1ビットだけ異なる 解答 $f(b)=f_0\oplus f_1\oplus f_2 \oplus \dots \oplus f_{63} \quad\left(f_i=i b_i\right)$ $b&rsquo;=g(b,x) \implies b&rsquo;_m \neq b_m\quad\left(m=x\oplus f(b)\right)$ チェス盤が16x16の場合のプログラム 解説 $x=f(b)\oplus m$となるような$m\in B^6$は必ず存在する 盤面の各マスに$m$の値を割り当てることで,1マスの操作だけで$m$を表現できる 盤面のマス目の数も,$m$がとりうる値の数も64 $f(g(b,x))=f(b)\oplus m=f(b)\oplus f_m\oplus m(1-b_m)$ 応用 長さ$2^N$の任意のビット列について,任意の1ビットだけを反転させることで,長さ$N$のビット列を表現できる 参考文献 # 超難問論理クイズ「2人の幼女とチェス盤の部屋」が本当に難しすぎた - 明日は未来だ! 幼女問題まとめ - GItHub Gist Impossible Escape?</description></item><item><title>ArchLinuxのインストール</title><link>https://ar.falsy.cat/note/info-tech/install-archlinux/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/info-tech/install-archlinux/</guid><description>概要 ArchLinuxのインストール手順を記録する Live Environmentの起動方法については触れない 前提 qemu上の仮想マシン BIOS GPT x86_64 デュアルブートなし できるだけシンプル,ミニマリスティックに 手順 1. 事前準備 1 2 3 loadkeys jp106 # キーボード設定 ping google.</description></item><item><title>C/C++のsanitizerの使い方</title><link>https://ar.falsy.cat/note/info-tech/c-cpp-sanitizer/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/info-tech/c-cpp-sanitizer/</guid><description>概要 バグを検知するコードを埋め込むための,sanitizerと呼ばれる機能がある このページではsanitizerの使い方を説明する 使い方 コンパイル時にsanitizerを埋め込む 種類ごとにオプションが異なる XXXにはSanitizer名をカンマ区切りで羅列する 代表的なSanitizer名については後述 1 2 g++ -fsanitizer=XXX a.</description></item><item><title>dart言語</title><link>https://ar.falsy.cat/note/info-tech/dart/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/info-tech/dart/</guid><description>概要 Google製プログラミング言語 fl
|
2023-02-23 16:56:48 +00:00
|
|
|
|
<ul>
|
|
|
|
|
<li>
|
|
|
|
|
<a href="https://github.com/jackyzha0/quartz" rel="noopener">Quartz</a>で
|
|
|
|
|
<a
|
|
|
|
|
href="https://ar.falsy.cat/note/info-tech/obsidian/"
|
|
|
|
|
rel="noopener" class="internal-link"
|
|
|
|
|
data-src="https://ar.falsy.cat/note/info-tech/obsidian/">Obsidian</a>のVaultを公開する</li>
|
|
|
|
|
<li>「<em>セカンドブレインデジタルガーデン</em>」という御大層な言葉は
|
|
|
|
|
<a href="https://github.com/jackyzha0/quartz" rel="noopener">Quartz</a>の紹介文からの引用</li>
|
|
|
|
|
</ul></description></item><item><title>Obsidianについて</title><link>https://ar.falsy.cat/note/info-tech/obsidian/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/info-tech/obsidian/</guid><description>公式サイト
|
2023-04-08 15:15:56 +00:00
|
|
|
|
概要 オフラインのwikiっぽいもの(=Vault) 記法はmarkdown Vaultは全てローカルに保存される インストール 公式サイトに各OSのインストーラが揃ってる Macではbrew install obsidianができる いいところ シンプルでスタイリッシュなデザイン 完全ローカルなので高セキュリティ 数式が使える $E=mc^2$ わるいところ 完全ローカルなので同期が課題 Vaultが巨大になるほど同期コストも増加 Macにて,エディタ上のリアルタイムプレビューとIMEが競合して日本語が正常に入力できないことがある 所感 ar.</description></item><item><title>Pleroma</title><link>https://ar.falsy.cat/note/info-tech/pleroma/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/info-tech/pleroma/</guid><description>概要 ActivityPubに対応したlightweight(自称)なSNS 単体で見るとlightweightには思えないけど,mastodonと比べたら確かにlightweight DB肥大化問題 長期間Pleromaを稼働させ続けると,DBのレコード数がやばいことになる DBのレスポンスがくそ長くなり,最終的にタイムアウトで500になる オブジェクトの寿命とか設定してみたけど特に意味はなかった 解決法 ローカルアカウントそれ自体の情報以外の情報を削除する pleromaを停止して,postgresで次のSQLを実行する 自動化しても良いかもしれない 追記: フォロー/フォロワー情報も削除されてしまったので改善が必要!!! 1 2 3 4 TRUNCATETABLEactivitiesCASCADE;#全アクティビティの削除DELETEFROMusersWHEREnotlocal;#全リモートユーザーの削除VACUUMFULL;VACUUMANALYZE;</description></item><item><title>qemu</title><link>https://ar.falsy.cat/note/info-tech/qemu/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/info-tech/qemu/</guid><description><h2 id="概要">概要</h2>
|
2023-02-24 03:44:59 +00:00
|
|
|
|
<ul>
|
|
|
|
|
<li>コマンドラインベースのVirtualBoxと思っている</li>
|
2023-02-23 11:06:59 +00:00
|
|
|
|
<li>今のところM2チップのMacbook ProでLinuxを使うための最善手
|
|
|
|
|
<ul>
|
|
|
|
|
<li>M1/M2向けVirtualBoxはまだ開発者プレビューしかなく,まともに使えなかった</li>
|
|
|
|
|
</ul>
|
|
|
|
|
</li>
|
2023-06-23 12:15:59 +00:00
|
|
|
|
</ul></description></item><item><title>パラメトリック検定とノンパラメトリック検定</title><link>https://ar.falsy.cat/note/study/statistics/hypothesis-test-parametric/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/study/statistics/hypothesis-test-parametric/</guid><description>概要 仮説検定におけるパラメトリック検定とは,母集団のサンプルに対する検定のうち,母集団の分布を事前に仮定する検定である 母集団のサンプルに対する検定のうち,パラメトリック検定でないものはノンパラメトリック検定である パラメトリック検定 母集団がある特定の分布であると事前に仮定する検定 ノンパラメトリック検定に比べて,計算が楽 手計算はこっちの方が嬉しい 母集団が仮定と異なる分布を持つ場合,検定の結論に意味は無い 事前検定で母集団の仮定を検証するのはやめた方がいい(後述) ノンパラメトリック検定 母集団の分布を仮定しない検定 計算がめんどくさい サンプルサイズが頭おかしいほど大きくない限り,コンピュータなら一瞬 仮定に沿うパラメトリック検定が存在する場合,それよりも精度は落ちるが,実用的な問題はない 事前検定 欲しい結果を得る検定の前に行われる検定のこと 多重検定の問題を孕む 個人的には,大抵の場合において事前検定は愚行だと思っている 母集団の正規性を仮定するパラメトリック検定を使いたいがために,事前検定として正規性の検定(Shapiro-wilk test)をする人がいる 個人的には多重検定問題沼に足を突っ込むぐらいなら,そこまでしてパラメトリック検定を使う必要はないと思う 大人しくノンパラメトリック検定を使うべき そもそもコンピュータ使えば計算コストは無視できる まとめ 仮説検定は2つに分けられる パラメトリック検定: 母集団の分布になんらかの仮定が必要な検定 ノンパラメトリック検定: それ以外の検定 パラメトリック検定をしたいがために多重検定を使うぐらいならば,ノンパラメトリック検定を使うべき</description></item><item><title>仮説検定</title><link>https://ar.falsy.cat/note/study/statistics/hypothesis-test/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/study/statistics/hypothesis-test/</guid><description>概要 仮説検定とは,母集団の母数に関する帰無仮説について,棄却/受容を標本から客観的に判定する手続き 有意確率とは,帰無仮説が真だった場合に誤って棄却する確率である 仮説検定において,有意確率が事前に定めた有意水準よりも小さかった場合,帰無仮説を棄却する 検定手順 帰無仮説を仮定する 帰無仮説のもとで検定したい事象が発生する確率$p$を求める $p$が事前に定めた有意水準よりも小さいならば,帰無仮説を棄却する 結論に生じうる誤り 第一種の誤り: 帰無仮説が正しい,かつ,帰無仮説を棄却してしまう 発生確率=有意確率 発生確率を設定できる 第二種の誤り: 帰無仮説が誤っている,かつ,帰無仮説を受容してしまう 発生確率は不明 発生確率を設定できない 有意水準を小さくすることで第一種の誤りは起こりにくくなるが,第二種の誤りが起こりやすくなる(トレードオフ) 大体の場合で5% 第一種の誤りが許されない場面(医療など)では1% 例 コイントスを10回やって7回表が出た.コイントスは公平か? 7回表が出る確率は$\frac{1}{2^{10}} \cdot {}_{10} \mathrm{C}_7=0.</description></item><item><title>仮説検定の多重性問題</title><link>https://ar.falsy.cat/note/study/statistics/hypoth
|
2023-02-23 17:14:35 +00:00
|
|
|
|
<ul>
|
|
|
|
|
<li>今までの国語の教科書に出てきた忘れられない奴等を忘れないために記録しておく</li>
|
2023-06-26 13:50:34 +00:00
|
|
|
|
</ul></description></item><item><title>大臣賞を取れるプレゼンの作り方</title><link>https://ar.falsy.cat/note/essay/effective-presentation/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/essay/effective-presentation/</guid><description>このページでは,私がU22プログラミングコンテスト2022の最終審査回で発表したプレゼンについて,準備するときに考えたことを紹介します.このプレゼンは大臣賞を取れた1つの要因だと思っているので,今後もしプレゼンをする機会があれば参考にしてみて下さい.
|
|
|
|
|
実際のプレゼンの様子は YouTubeで公開されています.よければご覧ください.
|
|
|
|
|
背景 U22プログラミングコンテストとは,毎年開催されている作品応募型のプログラミングコンテストで,40年以上の歴史があります.期限(8/31)までに作品を完成させ,応募することでエントリーすることができますが,U22の名前の通り22歳以下の人しか参加できません.
|
|
|
|
|
応募された作品は総勢20名程度の審査員に選考され,この選考を突破した16作品の製作者だけが最終審査会に参加できます.審査員の一覧には東京大学の名誉教授やIT企業の役員の方々が並んでおり,また,応募総数は毎年300を上回っているため,最終審査会へ参加することは非常に難しいです.
|
|
|
|
|
最終審査会では,参加者が1人ずつ,制作した作品について10分程度の発表を対面で審査員に向けて行います.2022年の場合は一般向けにニコ生配信もされており,同接は1万人程度でした.
|
|
|
|
|
全員の発表が終わると,審査員によって各16作品が審査され,経済産業省大臣賞,局長賞やスポンサーの企業賞などが応募者に授与されます.ここで私は経済産業省大臣賞(副賞50万円)とPCAクラウド賞(副賞:M2 Macbook Pro)をいただきました.余談ですが,実は2020年にも参加しており,その時は経済産業省の商務情報政策局長賞(副賞5万円)を頂きました.金額が微妙
|
|
|
|
|
このページでは,そんな大臣賞をとれるようなプレゼンを作るときに考えたことを紹介します.
|
|
|
|
|
スライドを作る前に・・・ 勝利条件を決める まずは,スライドを作る前に,最終審査会に参加して得たい結果,満たすべき条件である勝利条件を決めました.勝利条件というとゲームのように聞こえますが,実際のゲームのように明確なルールがあれば自分が取るべき最善手を見つけやすくなります.だからこそ,このステップではルールを明確に決定し,発表そのものをゲームとして捉えられるようにしました.
|
|
|
|
|
ここでは,勝利条件を「大臣賞を取る」に定めました.2020年の最終審査会に無策で挑んで微妙な結果を取ってしまったのが悔しかった,というのが理由です.
|
|
|
|
|
戦略を考える 次に,発表の方向性,言い換えれば戦略を決めました.勝利条件を満たすためには,受賞者の決定権がある審査員の方々に,何らかの影響を与えなければなりません.物理的,金銭的なものを除けば,私が審査員に与えられる影響は精神的なものだけです.そのためこのステップでは,審査員の記憶,感情に発表を通してどのような影響を与えるかを決定しました.
|
|
|
|
|
結論として,戦略を「ほかのどの発表よりも,自分の発表を審査員全員の記憶に残す(いい意味で)」に定めました.以下ではその経緯を説明します.
|
|
|
|
|
ターゲットの調査 戦略を決定するにはターゲット,つまり審査員の方々について,よく知る必要があります.特に,どのような専門知識を持っているのか,何に興味があるのかという情報は非常に重要です.いくら高度で技術的な話をしたところで,相手に理解されなければ,相手に興味を持たれなければ,ただただ貴重な発表時間を失うだけだからです.</description></item><item><title>明晰夢を利用した現実の証明</title><link>https://ar.falsy.cat/note/word-play/proof-of-reality-using-lucid-dream/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/word-play/proof-of-reality-using-lucid-dream/</guid><description>概要 今の意識が現実であることを証明する手法を論理的に導く ただの言葉遊びなので哲学的な何かは期待しないでほしい 前提 ここでは次の前提のもと議論を進める 夢を見ていることを自覚している夢を見ている,ならばかつその時に限り,明晰夢を見ている 明晰夢を見ている,ならば,全てが思い通りになる 夢でないならば現実である 証明は次の定義の元で行う 状況$A$: 夢を見ている 状況$B$: 夢を見ていることを自覚している 状況$C$: 明晰夢を見ている 状況$D$: 全てが思い通りである 証明の最終的な目標は$X\implies \overline{A}$を導くことである 証明 前提より $P_1: A\cap B\iff C$ $P_2: C \implies D$ $P_1,P_2$より,三段論法を用いて $P_3: A \cap B \implies D$ $P_3$の対偶より $P_4: \overline{D}\implies \overline{A\cap B}$ $P_4$より,ド・モルガンの公式を用いて $P_5: \overline{D}\implies \overline{A} \cup \overline{B}$ $B$は意図的に真にできるため,$P_5$より $\overline{D}\cap B \implies \overline{A}$ 結論 事前に夢を見ていることを自覚している,かつ,思い通りにならないことが存在する,ならば,それは現実である ただし,この手法では全ての現実を証明できるとは言えないことに留意されたい</description></item><item><title>片手鍋で米を炊く</title><link>https://ar.falsy.cat/note/chores/cooking-rice-with-saucepan/</link><pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate><guid>https://ar.falsy.cat/note/chores/cooking-rice-with-saucepan/</guid><description>概要 炊飯器が無くても米は炊ける ただし火を使う間,22分程度拘束される 手順 片手鍋で米(3合)を研ぐ 水(500ml)を入れる 蓋をして鍋ごと冷蔵庫で30分冷やす 蓋をしたまま中火で13分 弱火で3分 とろ火で6分 火を消して蓋をしたまま10分放置 補足 冷やす時間は15分程度まで短縮しても良い 短縮した場合は中火の時間も12分程度に縮める 最後の放置が結構重要 火を消した直後はまだべちゃべちゃしてる</description></item></channel></rss>
|